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Abstract
This review focuses upon the measurement of force, indentation, and
deformation with the atomic force microscope (AFM). Measurement and theory
for elastic and viscoelastic particles and substrates are covered, as well as for
deformable fluid drops and bubbles. A brief review is given of papers that use
tapping mode imaging, normal and lateral force modulation, noise spectra, and
indentation measurements. Measurement and calibration techniques that are
essential for quantitative results with the AFM are discussed in detail. The
author’s contribution to elastic and viscoelastic theory for extended range forces
is outlined, and the application of these to measured data for the adhesive van
der Waals force and for the electric double layer repulsion is described.
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1. Introduction

1.1. Motivation

Viscoelasticity is that phenomenon wherein the deformation of a material depends upon the
previous changes in the load. It combines elastic deformation, which is determined by the
current value of the load, and viscous flow, which occurs in incompressible liquids in response
to pressure gradients. Viscoelastic behavior is important for biological tissues, cells, and sub-
cellular structures, for industrial adhesives and gels, for membranes and surface coatings, and
for polymeric materials. Polymer melts and solutions are non-Newtonian fluids and their
viscoelasticity is exploited industrially in thickeners, flow improvers, and stabilizers.

A viscoelastic material has a finite relaxation time. It continues to creep for some time after
the applied load has stopped changing, and it takes time for the material to recover its original
shape after the load has been removed. Plastic materials, and liquid-like viscoelastic materials,
never fully recover. Viscous deformation, unlike elastic deformation, is a dissipative process,
which is to say that the energy expended in causing the deformation is not fully recovered
during the relaxation.

These two signatures of viscoelasticity are manifest in different types of measurements
with the atomic force microscope (AFM). Viscoelastic relaxation can be measured in an
indentation or force measurement, by monitoring the cantilever movement following a step
change in the piezo-drive. Energy dissipation can be measured from the hysteresis between
the loading and unloading branches of a force measurement. Of course the piezo-drive itself
usually displays creep and hysteresis, and friction due to the cantilever sliding on the substrate
also causes hysteresis, so these have to be eliminated for an unambiguous interpretation. The
phase difference between drive and response in an oscillatory measurement (e.g. tapping mode
imaging or force modulation) can also signify viscoelasticity. Again, however, care must be
taken in leaping to such a conclusion because phase differences can also be caused by a purely
elastic substrate, piezo-drive inertia, or electronic delays. Phase changes during imaging can
qualitatively indicate local regions of the surface with differing elasticity or viscoelasticity, but
it can be difficult to quantify these in terms of material properties.

The advantage of using the AFM to measure viscoelastic properties is that it is localized, it
is surface sensitive, and it yields information in molecular detail. Macroscopic rheological mea-
surements give the bulk material behavior, but, in the case of composite materials, for example,
they cannot give directly the individual properties of the matrix, or of the inclusions or their in-
terfaces, which could be crucial information required in designing new materials. Similarly, the
different components of a biological cell have differing material properties, and the measure-
ment of these individually can be important for understanding their function and ultimately to
altering, controlling, or otherwise exploiting them. Surface sensitivity is important because, for
example, the structure of a polymer is different at the surface from the bulk, and consequently
the response of the surface layers to stress is also different. This can be probed with the AFM in
a way that bulk rheometry cannot. Although surface properties are its forte, the AFM can also
measure bulk viscoelastic properties, such as those of non-Newtonian fluids like polymer melts
or solutions, which approach bulk values as the separation between the probe and the substrate
is increased. The advantage of the AFM over macroscopic rheometry in this case is its molec-
ular resolution. Such molecular detail, both for bulk and for surface measurements, is ideal for
testing and developing theories of viscoelasticity, and for designing nanomaterials and devices.

1.2. Techniques and examples

The AFM has been used on a range of systems to measure quantitatively or qualitatively
viscoelastic properties. Perhaps the most common type of study is tapping mode imaging,
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where the phase information is used to deduce local dissipation due to viscoelastic behavior. A
number of such studies have been performed, and examples include polymeric surfaces [1–15],
non-Newtonian fluids [16, 17], and biological cells and sub-structures [18–21].

Related to tapping mode imaging is the force modulation technique, where the cantilever is
oscillated at fixed or slowly varying load, and the amplitude and the phase angle are measured
without lateral scanning. In the force modulation method results are obtained as a function
of the tip–sample distance for fixed drive frequency [22, 23], whereas in the frequency-
sweep method the drive frequency is varied at a fixed distance [4, 24, 25]. As examples,
force modulation has been used to characterize biological samples [26–29] and polymeric
surfaces [8, 30–34]. The elastic modulus of polymer nanotubes has been determined by a
modulation technique [35].

In the context of tapping mode imaging and of force modulation, it is important to note
the warning of Friedenberg and Mate [30], who cautioned against interpreting the in-phase and
out-of-phase responses of force modulation microscopy as simply ‘elasticity’ and ‘viscosity’. A
number of researchers have modeled the tapping process in an attempt to quantitatively extract
the viscoelastic properties from the images [13, 15, 32, 33, 36–39]. If nothing else these studies
confirm that the phase lead or lag is not simply related to the viscoelastic moduli of the sample.

Instead of force modulation, lateral modulation has been used, and lateral friction curves
have been measured in an attempt to obtain the friction coefficient and also the viscoelastic
moduli [40–43]. Basire and Frétigny [44] studied the lateral force in the stiction regime
for styrene-butadiene, and found that it increased with dwell time prior to the measurement,
in correlation with an increase in indentation during this time using indentation and force
measurements; they [45] also found that the lateral friction force increased during the relaxation
following a step change in the normal load.

A different approach has been advocated by Johannsmann and co-workers [46–50], who
measured the thermal spectra of the cantilever noise. In conjunction with a Langevin equation
and the fluctuation–dissipation theorem, this gives a type of friction coefficient and an effective
spring constant as a function of distance from ‘contact’. Whilst these presumably correlate with
the viscoelastic properties of the substrate and liquid interlayer, it is unclear how to obtain quan-
titatively the viscoelastic modulus or creep compliance function of the material from the data.

From the quantitative perspective, perhaps the most promising approach to the
determination of viscoelastic moduli with the AFM is force measurement. This may also be
called indentation, with the word used in the widest sense to include contact and non-contact
deformation, and also elastic deformation. In macroscopic measurement, indentation refers
exclusively to contact, and generally to permanent or plastic deformation. In the AFM it is not
possible to unambiguously define ‘contact’, and in the viscoelastic case indentation describes
a penetration or deformation that relaxes after removal of the force. In the present review the
measurement of the adhesion or maximum pull-off force will also be considered as a force
measurement. As mentioned above, in force measurement the signature of viscoelasticity is
hysteresis between the loading and unloading branches, and also time and velocity dependence
of the results.

Although viscoelastic force measurements have been performed on a range of biological
materials [51–58], arguably the quantitative modeling of AFM measurements is more
straightforward for homogeneous polymeric substrates or particles [59, 60]. The most common
approach to the analysis of the force measurements is to modify the classical elastic theories
of contact mechanics, such as Hertz for non-adhesive surfaces and Johnson–Kendall–Roberts
(JKR) for the case of adhesion [61]. In general either a time-dependent Young’s modulus,
also known as the creep compliance function, or else a time-dependent surface energy is
introduced. In the opinion of the present author, the latter approach has no physical basis.
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The creep compliance function rests on sound physical principles, but some caution should be
exercised where a phenomenological relationship is invoked for this. In many cases it is simply
inserted into Hertz or JKR theory, which, as argued below, is not correct since these theories are
predicated on a static free energy minimization procedure that does not apply to time-varying
deformation of viscoelastic materials.

Examples of the modified contact mechanics approach include the work of Chizhik,
Tsukruk and co-workers [62–66], who performed force measurements on various polymeric
substrates and measured a rate dependence. They discussed the data in terms of a Hertz-type
theory due to Johnson [67] that says that the cube of the contact area is proportional to the rate of
loading and to the creep compliance function. Mahaffy et al [20, 21] modified the Hertz model
for elastic deformation by doing a Taylor expansion for a small oscillatory deformation due to
an oscillatory perturbing force, with the coefficient connecting these defined as a viscoelastic
material parameter whose real part is said to reflect the elastic storage response, and whose
imaginary part is said to reflect the viscous loss response of the sample. (As mentioned
above, such an interpretation of the phase difference is not correct [13, 15, 30, 32, 36–39].)
Vakarelski et al [68] measured time- and velocity-dependent adhesions, and described their
data with JKR theory and a fitted, time-dependent surface energy. Opdahl et al [69] used AFM
force measurements to characterize changes in the surface viscoelastic and adhesive properties
of bulk hydrated and dehydrated poly(hydroxyethyl) methacrylate-based contact lenses as a
function of humidity, taking the Young’s modulus from a fit to the elastic Hertz theory. Yang
et al [70] measured force hysteresis in glassy polymer films, and they were able to describe
the loading branch alone with a spring and dashpot model of the surface combined with a
phenomenological model of the time rate of change of the viscoelastic material parameters
and JKR theory. Mary et al [71] developed a JKR-type contact theory for adhesive layered
substrates indented by a sphere. The analysis, which extended earlier work [72–74], was
applied to macroscopic indentation measurements of a glass lens and a cross-linked acrylate
polymer, and has also been used for lateral loading [75].

Contact mechanics is appropriate for macroscopic measurements, where the deformations
and contact areas are large on molecular length scales. For the AFM, however, the
measurements are carried out with molecular resolution, the probes are colloidal sized, and the
size of deformations, separations, and contact areas are comparable to the range of the surface
forces that are involved. In realistic cases, charged surfaces in an electrolyte can interact via
an electrical double layer repulsion that decays over length scales of 1–100 nm, and the van
der Waals attraction that arises between all bodies has a measurable range of 1–10 nm. Such
extended ranges create conceptual difficulties in defining what is meant by contact, and even
if some operational definition of contact and non-contact could be agreed, the surfaces beyond
the contact region still interact across the gap. Such effects are ignored in contact theories, and
so in general they are not capable of quantitatively describing AFM measurements with the
resolution that the device is capable of.

In the case of viscoelastic materials there is an additional reason for going beyond contact
theories. The functional forms that are the Hertz and the JKR theories for repulsive and for
adhesive surfaces, respectively, result from the minimization of the elastic and surface energies,
and that due to the applied load. This is an equilibrium result and it is valid only in the static
case for elastic materials. There is no such minimization principle for non-equilibrium systems,
and in the viscoelastic case with time-dependent loads and deformations these functional forms
are simply not applicable, even if the contact picture were. One cannot simply insert a creep
compliance function into Hertz or JKR theory and apply them to viscoelastic deformation.

Arguably the only viable approach is to combine the fundamental equations of elasticity
with the actual surface forces present, and to solve the resultant system of equations
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numerically. What one loses compared to Hertz or JKR theory is analytic approximation
(except for elastic deformation where some accurate approximations for extended range forces
have been obtained) [76]. What one gains is the certainty of an approximation-free theory that
is soundly based on the accepted equations of elasticity and viscoelasticity and on the known
surface forces.

The present author has developed algorithms for the treatment of deformation due
to realistic forces of extended range, and has given results in both elastic [76, 77] and
viscoelastic [78, 79] cases. In the elastic case the theory has been applied to model measured
data for the case of attractive van der Waals forces [80], repulsive electrical double layer
forces [81], and oscillatory solvation forces [77, 82]. In the viscoelastic case adhesive surfaces
that interact with van der Waals attractions have been modeled [79], as have charged surfaces
that interact with an electrical double layer repulsion [78], and the latter has been applied
quantitatively to actual AFM data [83, 84]. The case of AFM force measurements of bubbles,
vesicles, and droplets, whose deformation is due to membrane elasticity, has also been studied
by the present author [85, 86].

1.3. Preview

This review focuses on two main areas in which the author has contributed to the measurement
of elastic and viscoelastic materials with the AFM. In section 2 the actual technique of force
measurement with the AFM when the surfaces are deformable is described. It turns out that
for deformable substrates or probes one cannot use the same methods to calibrate the AFM
or to analyze the force curves as one does for rigid surfaces. In view of the fact that a
significant proportion of papers in this field, including many cited above, have not carried out
the appropriate calibration or analysis, it seems worthwhile to review the correct experimental
techniques in detail.

In section 3 measured and calculated data are given for deformable surfaces. As mentioned
at the end of the preceding sub-section, the best suited theoretical approach to deformation
measured with the AFM is one that accounts for the extended range of the surface forces, and
both the computational algorithm and model results obtained by the author are reviewed below.
These ought be useful as an indication of what is to be expected for an AFM measurement in
the elastic or in the viscoelastic case, and they should aid the design of measurement protocols
and the qualitative interpretation and quantitative analysis of data.

2. Measurement and calibration techniques

2.1. Photodiode calibration

The measurement of forces and the quantitative extraction of material properties with the
AFM requires certain instrumental calibrations. The first and most important of these is the
photodiode sensitivity, which converts the measured voltage to cantilever deflection and thence
to force via the cantilever spring constant, which must be independently measured. For rigid
substrates, the standard method is to take the slope of the constant compliance region (change in
voltage divided by change in piezo-position) as the sensitivity factor, since one can be assured
that movement of the substrate is rigidly translated into deflection of the cantilever [87]. The
spring constant can be determined by resonance methods [88, 89] or by calculation [90].

Figure 1 shows AFM force data obtained for a silica substrate partially covered with
patches of polystyrene film [91]. In figure 1(A), one can see the photodiode saturation at ±10 V,
and, at negative voltages, the horizontal, zero force regions. The measurements were obtained
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Figure 1. Deflection of an AFM cantilever (spring constant k = 0.58 N m−1) for a tip in air
approaching a rigid silica substrate (crosses) and a polystyrene film (circles and dashes). (A) Raw
photodiode voltage versus piezo-crystal extension. The two data series are offset for clarity. Note
the difference in slopes of the constant compliance contact regions. (B) Cantilever deflection versus
nominal separation. The calibration factor was obtained from the slope of the constant compliance
region of silica (circles and crosses) or from that of polystyrene (dashes). The post-contact
deformation (negative separations) for polystyrene has been fitted with JKR theory (obscured curve)
using E/(1 − ν2) = 1 × 108 Pa, a radius of curvature R = 700 nm, and a fitted surface energy,
γ = 1.5 mJ m−2. (C) The jump into contact fitted with the van der Waals attraction. The water–
air–water Hamaker constant, A = 3.7 × 10−20 J, was used, and a fitted R = 700 nm, and a fitted
d = 4.5 nm for polystyrene and d = 6 nm for silica. Data from [91].

by bringing the tip into contact on either the bare silica or on a polystyrene patch, without
changing the set-up of the AFM. This means that the change in slope in figure 1(A) is due to the
deformation of the polystyrene. The slope of the constant compliance region for rigid materials
gives the calibration factor for the photodiode, which is also called the sensitivity. From the
silica data, this is 0.23 V nm−1. The polystyrene data have a lower slope, 0.21 V nm−1, which
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is due to the fact that only part of the motion of the piezo-drive goes into moving the tip of the
cantilever; the rest goes into indenting the polystyrene.

The sensitivity factor is used to convert the photodiode voltage to cantilever deflection, x .
Multiplying the latter by the spring constant gives the force or applied load, F = kx . The
nominal separation is the actual separation between the surfaces if they are completely rigid. It
is the deflection minus the drive distance, h0 = x − z +const., using a suitable sign convention.
The constant represents the choice of the zero of separation. For rigid surfaces the separation
cannot be negative, and so zero corresponds to the position where the force curve becomes
vertical. For deformable surfaces the choice of zero is more problematic (see below), and in
figure 1 for polystyrene it was fixed at the position following the van der Waals jump. Negative
values of the nominal separation correspond to the amount of deformation that has occurred.
This is also called flattening, indentation, or penetration.

The point of the dashed polystyrene data in figure 1(B) is to show what goes wrong if the
slope measured for a deformable surface is used to calibrate the photodiode. In this case the
magnitude of the force is wrong, the separation prior to contact is wrong, and the indentation
post-contact is completely neglected. Note that the polystyrene data look quite linear at larger
loads. Hence one cannot conclude from the linearity of the constant compliance region that the
surfaces are undeformable. This erroneous procedure—using the high load, apparently linear
part of the force curve for a deformable surface to calibrate the photodiode—is quite common
in the literature. Unless a paper specifies the actual method of calibration explicitly, it should be
assumed that the erroneous procedure was used and the results should be regarded as qualitative
rather than quantitative.

The lesson is that if the sensitivity of the photodiode is measured by a contact method (a
non-contact method will be discussed shortly) then it must be obtained with rigid substrates
and probes. In the present case a patchy deformable film was used, so that the calibration
against the bare silica could be performed in the same experiment as the actual measurement
of the deformation merely by shifting the point of contact. This technique can also be used
if one has a deformable colloidal probe mounted on a rigid substrate (and a rigid tip or probe
on the cantilever). In the case that the entire substrate is deformable, it may be possible to
perform the calibration by placing a rigid cover slip on top of the substrate. Deformation of
the underlayer will then be negligible since it is proportional to the local pressure, which is
minimized by the rigid cover slip. Alternatively, an ex situ calibration may be performed by
exchanging the substrate for a rigid one, taking care not to alter the set-up of the AFM, as can be
done with practice [92]. One ought to confirm the reproducibility of such an ex situ calibration
by repetition.

The polystyrene film of figure 1 showed little hysteresis between loading and unloading,
and so it was taken to be elastic and the deformation following the jump into contact in
figure 1(B) was fitted with the JKR theory [61]. The fitted value of the elasticity parameter,
E/(1−ν2) = 1×108 Pa, depends on the value of the tip radius, but the latter is constrained by
physically reasonable values of the Hamaker constant because the product AR must be constant
to fit the van der Waals force. The lower bound, which was used here, corresponds to the water–
air–water value A = 3.7 × 10−20 J [93], which gives R = 700 nm and E/(1 − ν2) = 0.1 GPa.
The upper bound corresponds to the silica–air–silica value A = 7 × 10−20 J [93], which gives
R = 350 nm and E/(1−ν2) = 0.15 GPa. The value 0.1 GPa is markedly less than the value of
bulk polystyrene, E = 3 GPa [94], and is consistent with the fact that the surface of polystyrene
films is less glassy than the bulk [95–100]. Overney et al [16] also estimated a value of 0.1 GPa
using the AFM.

Figure 1(C) shows the jump into contact due to the van der Waals attraction. The extended
range of the surface force is graphically illustrated here. The data have been fitted for a force of
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the form F(h) = AR/12(h − d)2, where h is the surface separation, A is Hamaker constant,
R is the radius of curvature of the tip, and d is the total thickness of any water films on the
surfaces. The evidence for the water film is the hook at the base of the constant compliance data
for silica, which is due to the finite time it takes to drain the water from the contact region. The
water film arises from the humid atmosphere and it is thicker on the more hydrophilic surface.
(The value for polystyrene may in fact represent a film on the silicon nitride cantilever tip.)

2.1.1. Non-contact photodiode calibration. If the spring constant of the cantilever is known,
then it is possible to calibrate the photodiode from the thermal fluctuations in the voltage [101].
Fitting a Lorentzian to the noise spectrum of the fundamental mode (i.e. the first peak of the
thermal spectrum), one can obtain the resonance frequency fR in hertz, the dc power response
Pdc in V2 Hz−1, and the quality factor Q [102]. It must be emphasized that these are fits to the
fundamental mode. In terms of these the calibration factor for the cantilever is [101]

α = 1.2771

√
3πk fR Pdc Q

8kBT
, (2.1)

where k is the spring constant, kB = 1.38×10−23 J K−1 is the Boltzmann constant, and T is the
absolute temperature. The pre-factor 1.2771 arises from the conversion from angular deflection
to position deflection, and from the ratio of the power in the first mode to the total power. In
SI units α is in V m−1, and corresponds to the slope of the constant compliance curve for rigid
surfaces discussed above. With it, the deflection of the cantilever is x = �V/α, and the force is
F = kx . A more detailed discussion of this result, and a correction for the tilt of the cantilever
and for friction, is given in [101].

The above result requires the spring constant of the cantilever, which can be obtained
in a prior experiment by the usual thermal method [103–105] or by attaching a mass to the
cantilever and measuring the resonance frequency [88]. Care ought be taken to place the mass
precisely at the place where the tip or the probe joins the cantilever because the effective spring
constant scales with the cube of the free length of the cantilever, and a small discrepancy in
the position used to measure the surface force and that used to measure the gravitational force
gives a large error in the effective spring constant. Similarly, the spring constant measured by
the thermal method should be increased by a factor of (L0/L1)

3, where L0 is the total length
of the cantilever, which gives the thermal resonance, and L1 is the distance where the base
joins the tip, or to where the colloid probe will be attached, as this is the distance that gives the
measured force.

This in situ non-contact calibration method is the preferred calibration method, even when
one has the option of obtaining a rigid body constant compliance slope (because that can be
vitiated by friction). The thermal method has the additional advantage of being able to be used
when a deformable colloid particle is mounted on the cantilever, or when the cantilever tip is
functionalized and cannot be bought into contact prior to the actual measurement.

2.2. Zero of separation

In macroscopic measurements the distinction between contact and non-contact is unambiguous.
Within the resolution of the device all forces have zero range, and so any non-zero load means
that the bodies are in contact. The situation is not so straightforward at the molecular level,
since molecules interact over extended ranges, and if non-zero force were taken to mean contact
then all surfaces would be in contact all the time. What is required is an operational definition
of contact that can be used to compare different measurements and that can be matched with
theory.
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In the case of rigid bodies, such as silica in figure 1, one can choose the zero of separation
to be the point where the force is vertical, which coincides with the constant compliance region
whose slope was used to calibrate the photodiode. The rationale for this choice is that the range
of the Fermi repulsion between molecules is much shorter than the resolution of the AFM, and
it is this repulsion that is responsible for preventing the interpenetration of solid bodies. In this
case the definition of contact coincides with the normal macroscopic picture.

For the case of deformable bodies the situation is more complex. In this situation one
defines the nominal separation as

h0 = x − z + const, (2.2)

where x is the cantilever deflection, which is positive for a repulsion, z is the piezo-distance,
which increases on approach and causes the nominal separation to decrease, and the constant
is chosen so that the nominal separation becomes zero at an appropriate position, as will be
shortly specified. This definition ignores deformation, and so for rigid bodies the nominal
separation coincides with the actual surface separation, and the constant is chosen so that the
actual surface separation is never negative.

For deformable bodies, the actual separation is the nominal separation less the deformation,

h = h0 − u. (2.3)

The geometry is sketched in figure 2. The deformation is the extension of the surfaces. An
attractive force causes such an extension and a positive deformation, and in this case the actual
separation is less than the nominal separation. Conversely, flattening occurs for a positive load
(repulsion), in which case u is less than zero, and the actual separation is greater than the nom-
inal separation. The nominal separation can be negative. If the zero is chosen appropriately
so that h = 0 corresponds in some sense to physical contact, then the negative value of the
nominal separation corresponds to the amount of flattening of the surfaces. Such a picture is
most appropriate for surfaces that cannot interpenetrate; for loosely packed polymeric surfaces
this interpretation may not reflect reality.

For the case of the deformable polystyrene film in figure 1, the zero of nominal separation
was set as the first point following the van der Waals jump into contact. This has the virtue of
being well-defined and unambiguous. The amount of elastic extension of the surfaces at the
end of the jump can be estimated as 0.7 nm from JKR theory [61], and at the beginning of the
jump it is 0.5 nm from the central deformation approximation [76]. Hence this convention for
the zero of separation gives a reasonably realistic picture of the amount of deformation that
actually occurs to within about 1 nm.

For the case of an electric double layer repulsion there may not be a van der Waals jump,
and so a different criterion is required to set the zero of separation. Figure 2 shows the
force measured between a rigid silica colloid probe and a deformable poly(dimethylsiloxane)
(PDMS) solid droplet [106]. It can be seen that the slope of the force is continuous, and
that there is no clear demarcation of contact and non-contact. For rigid bodies 1 and 2 the
electrical double layer force is given reasonably accurately by the renormalized linear Poisson–
Boltzmann equation [107, 108]

F(h) = 64πε0εr R(kBT/q)2γ1γ2κDe−κDh

≡ 2πRκ−1
D Pe−κDh, (2.4)

where R−1 = R−1
1 + R−1

2 is the effective radius, ε0 is the permittivity of free space, εr

is the relative permittivity of the solvent, κ−1
D is the Debye length, and q = ze is the

valence of the ions times the charge on a proton (a symmetric electrolyte is assumed). In
plotting this expression the nominal separation is used, which will coincide with the actual
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(B)

Figure 2. (A) AFM force measurement (triangles) for a PDMS droplet (ψ1 = −46 mV,
R1 = 0.6 μm) and a silica sphere (ψ2 = −70 mV, R2 = 5 μm) in 1 mM KNO3 at pH 9.8 on
approach [106]. All curves use the renormalized linear Poisson–Boltzmann law with the measured
zeta potentials. The straight line is for rigid particles, the dotted curve is the analytic central
deformation elastic approximation, and the solid curve is the numerical elastic calculation (with
a short-range, 1/h9, steric repulsion added). Both of the curves use a fitted elasticity E = 0.4 MPa.
(B) Sketch of the geometry. The colloid probe (sphere) is attached to the cantilever, which deflects
upward by x under the influence of a repulsive force. The surface of the undeformed substrate is
represented by the dashed line, and that of the deformed substrate is represented by the solid curve.
The amount of deformation is u < 0, and the separation between the actual surfaces is h > 0. The
nominal separation, h0 = h + u, is in this case negative.

surface separation at large separations (small forces) when the surfaces are undeformed. The
renormalized potential is

γ = tanh(qψ/4kBT ), (2.5)

where ψ is the diffuse layer potential, which may be taken to be equal to the measured zeta
potential [108].

In figure 2, the zero of separation has been chosen so that the measured data coincide
with the calculated rigid body force at large separations [109]. The rationale for this choice is
that deformation is always negligible for weak enough forces. Of course what ‘weak enough’
means depends upon how deformable the surfaces are. Whether the AFM has the resolution to
access the weak force regime is indicated by whether or not the measured data coincide with
the rigid body data at large separations, as they do in figure 2.

The measured repulsion plotted against nominal separation is less for deformable bodies
than for rigid bodies. That is, the measured data in figure 2 lie below the straight line, which
would be the result if the surfaces were rigid. This is because at a given nominal separation
the actual surface separation is greater due to flattening, h > h0. Hence the force, which to
leading order is the rigid body result evaluated at the actual surface separation, is weaker. This
can be seen from the so-called central deformation approximation (CDA) [76], which gives the

10



J. Phys.: Condens. Matter 19 (2007) 473201 Topical Review

Figure 3. AFM data [111] for an n-decane oil droplet, Rb = 0.25 mm and silica colloid
probe Rp = 3 μm, interacting in 1 mM NaNO3, κ−1

D = 9.65 nm. From bottom to top the
concentration of the added SDS surfactant is 3 × 10−1, 10−3, and 10−5 M. The renormalized linear
Poisson–Boltzmann law (bold line) uses the measured zeta potentials ψSiO2 = −70 mV [112] and
ψdecane = −100 mV [113]. The curves are the results of deformation calculations using a fitted
interfacial spring constant [85, 86].

deformation due to the electric double layer force,

u = −
√

8πR

κD E2
Pe−κDh

≡ −ωe−κDh, (2.6)

where E = E ′/(1 − ν2) is the elasticity parameter. This gives the nominal separation as a
function of the actual separation, h0(h) = h + u(h). The dotted curve in figure 2 is the rigid
body F(h) versus this CDA h0(h). It can be seen that the CDA captures almost all of the
effect of the elastic deformation. The full curve is a full numerical calculation of the elastic
deformation due to the electric double layer force, and it can be taken as exact [76]. The small
increase in the repulsion over the CDA is the extra work that goes into the elastic deformation
of the body.

One interesting result for deformable surfaces is that the deformation renormalizes the
decay length at large loads. The CDA gives the force as [110]

F(h0) = 2πRκ−1
D P ′e−κ ′h0 , (2.7)

where the renormalized decay length is

κ ′ = κD

1 + ωκD
, (2.8)

and the renormalized pressure pre-factor is

P ′ = Pe−κ ′ω. (2.9)

This result is valid in the range −ω < h0 � κ−1
D .

Figure 3 shows results for oil droplets, which are charged due to adsorption of surfactant
from solution [111]. Again the zero of separation has been set to ensure that the data coincide
with the rigid body result at large separations. The curves are a result of a calculation that
takes into account the deformation of the droplet as it wraps around the probe particle [85, 86].
One can conclude that even though there is no sharp demarcation of contact and non-contact
for repulsive electrical double layer forces, the procedure for setting the zero of separation
advocated here works quite well.
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For a bubble or droplet, the wrap radius at a given force F is [85, 86]

Rw = R0
FκD Rp + 4πσ Rp

FκD R0 − 4πσ Rp
, (2.10)

where R0 is the original radius of the bubble or droplet, Rp is the radius of the probe, and σ is
the surface tension. The actual surface separation (closest separation, which is on the axis) is

h = κ−1
D ln

2πRp Rw P

κD F[Rw − Rp] . (2.11)

Unlike a solid elastic body, the bubble or droplet behaves like a Hookean spring, and the
deformation is

u = −F/kint, (2.12)

with the interfacial spring constant (for a contact angle of 90◦) being given by [114]

k−1
int = −1

4πσ
ln

Rp

2κD R2
0

. (2.13)

The nominal separation is of course h0 = h(F)+ u(F), which gives the curves in figure 3.
From these last two figures and the associated analysis one can conclude that elastic solids

and fluid droplets behave differently under loads. Whereas an elastic solid has a non-linear
deformation as a function of load, and a renormalized decay length under high loads, the
deformation of a fluid droplet is perfectly linear with load. What both deformable objects
have in common is that the measured force as a function of nominal separation is less than that
between rigid bodies due the fact that flattening increases the actual surface separation. Plotted
against actual surface separation the force would be larger due to the extra energy that goes into
elastic and interfacial deformation. What they also have in common is that at large separations
or weak forces, they both behave as rigid bodies, which fact should be used to set the zero of
separation.

2.3. Hysteresis and velocity dependence

As discussed in section 1, viscoelastic materials are characterized by their finite relaxation time,
which leads to velocity dependence, hysteresis, and other time-dependent effects. In seeking
to quantify these by measurement with the AFM, it is essential that other time-dependent
contributions be either eliminated or at least estimated. Unfortunately, piezo-crystals that are
used to change the sample–probe separation display non-linearities, hysteresis, and velocity
dependence that must be accounted for.

Figure 4 shows that the expansion factor of an AFM piezo-drive is indeed velocity
dependent [84, 91]. The data were obtained by applying a sinusoidally varying voltage to the
piezo-drive and directly measuring the amplitude of the piezo-drive response. The amplitude
of the applied voltage was fixed as the frequency was varied. Hence the figure is equivalent
to measuring the velocity dependence of the piezo-crystal expansion factor. In the context
of a viscoelastic measurement, where one might seek to determine the rate dependence of
the deformation, for example, the velocity dependence of the piezo-crystal should be either
eliminated or else measured and included in the data analysis. The 10% variation in the total
expansion may seem small over the several orders of magnitude in speed. But in realistic cases
one might be measuring a viscoelastic indentation that is a small fraction of the total piezo-
displacement, and that can therefore be comparable to the variation shown in figure 4.

Figure 5(A) shows interference fringes that were observed on the baseline (zero force)
region of an extend and retract measurement [116]. The fringes arise from interference between
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Figure 4. Displacement amplitude of the piezo-crystal as a function of frequency of the applied
voltage. The arrow indicates the displacement expected from the original interferometric calibration
of the crystal, and the line is a least squares fit [91].

Figure 5. Hysteresis of the piezo-drive [116]. The linear displacement is the change in the applied
voltage times the expansion factor. (A) Interference fringes detected by the photodiode in the base
line at large separations for piezo-crystal expansion (solid) and retraction (dotted). (B) Measured
piezo-crystal displacement for expansion and retraction.

the primary laser beam, which is reflected off the back of the tilted cantilever to the photodiode,
and the secondary beam, which is reflected off the back of the tilted cantilever, then off the
upper horizontal surface of the cell, then off the lower horizontal surface of the substrate, and
thence to the photodiode. The interference from the secondary beam, which may also be due
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Figure 6. Cantilever deflection versus measured piezo-drive displacement for extend and retract for
a silica colloid probe (R = 18 μm) and a mica substrate in 0.1 mM NaCl. The hysteresis in the
constant compliance region is due to sliding friction [117, 118].

to the reflections in the reverse order, can be eliminated by appropriate tilting of one or other
of the horizontal surfaces. The point of the figure is that the interference fringes for extend and
retrace do not coincide, which indicates that the piezo-drive has, at a given voltage, a different
displacement on the two branches. (The abscissa for the plot was obtained from the AFM data
file, and on both branches it is simply the applied voltage times the expansion factor.) This
may be seen directly from the hysteresis loop in figure 5(B). Here the piezo-displacement was
measured directly and plotted against the applied voltage times the expansion factor. For a
given applied voltage, the discrepancy between the piezo-displacement on the two branches
can be of the order of a micrometer. Such hysteresis and non-linearity are a general feature of
piezo-crystals.

There are several solutions to the problem. Some manufacturers have built into the AFM
a displacement sensor, and this gives the actual piezo-movement rather than the nominal
movement that assumes a fixed expansion factor. There are cost-effective methods for adding
such capabilities to existing devices [84]. Several AFMs operate in so-called closed-loop mode,
which is to say that the piezo-displacement is measured and used to fine-tune the nominal
voltage to obtain the desired piezo-displacement in real time. This can be useful for constant
velocity loading or unloading, as is required to measure true material viscoelastic hysteresis,
or if measurements at fixed indentation for different velocities are sought. Pre-programmed
polynomial curves built in to the software of the AFM are generally not adequate.

An additional cause of hysteresis is shown in figure 6, where friction as the probe slides on
the substrate in the axial direction creates a difference between the loading and the unloading
constant compliance slopes [115–118]. The sliding occurs during a normal force measurement
because the cantilever is tilted by about 10◦–15◦ to the horizontal, and this causes horizontal
motion along the long axis of the cantilever that can be 50–100% of the vertical piezo-
extension [117, 118]. The friction due to this sliding creates a torque and an additional angular
deflection on the cantilever that is equal and opposite on loading and unloading, which gives
rise to the hysteresis shown in figure 6. For rigid materials, the difference in slopes can be used
to measure the friction coefficient without any additional calibration being required [118]. For
viscoelastic materials, disentangling the hysteresis due to sliding friction from that due to the
material’s viscoelasticity can be problematic. In many cases the viscoelastic hysteresis can be
dominant, such as for very deformable surfaces that remain separated from actual contact due
to repulsive forces. In other cases one may be able to estimate the friction coefficient (e.g. from
a lateral friction measurement) [81, 92] and remove the effect of friction from the measured
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Figure 7. Loading and unloading force versus nominal separation for a PDMS droplet (R =
0.3 μm) and a silica colloid probe in 1 mM KNO3 at 1 μm s−1. The symbols are AFM data [106]
and the curve is a fit to a viscoelastic theory [78].

forces [117, 118]. These corrections remain to be investigated in detail, but one should at least
be aware of this possible contribution to any measured hysteresis.

There is an additional possible cause of hysteresis in the AFM, namely that due to
hydrodynamic drainage. For the usual surface forces, such as van der Waals or electric
double layer, the force is the same on approach as on separation, and they are independent
of velocity. They can be quantified using equilibrium theory. However, at high velocities
the drainage force, which is repulsive on approach and attractive upon separation, can
have a measurable effect, particularly for large colloid probes, weak cantilevers, highly
viscous fluids, and close separations. In normal AFM force measurements this hysteresis is
negligible.

2.4. Finite thickness effects

Figure 7 shows a force or indentation measurement for a viscoelastic PDMS droplet [106].
The hysteresis between loading and unloading is clearly visible. In this case the contribution
from friction has been taken to be negligible, partly because the forces are repulsive, partly
because the loading branch lies above the unloading branch, which is opposite to the order
caused by axial friction in figure 6, partly because the curvature of the contact region signifies
that elastic effects are dominant, and partly because the hysteresis is velocity dependent (not
shown) whereas the frictional hysteresis is rather insensitive to velocity [81, 92, 117, 118].
The curve in figure 7 is a fit to a non-contact viscoelastic theory [78] that will be discussed in
greater detail in the following section. The relevance of this theory in the present context is not
so much where the theory fits, but more the region where it does not. In the high load region, it
can be seen that the force increases more rapidly with decreasing separation than is predicted
by the theory that has been fitted to these and other low load data (not shown). The theory is
for an infinitely thick viscoelastic solid, whereas in the measurements the PDMS solid droplet
has a diameter of 0.6 μm. It can be seen that at the highest loads the deformation or flattening,
which is given by negative values of the nominal separation, is of the order of 60–80 nm, or
about 10% of the thickness of the material. In these circumstances the increase in the effective
stiffness seen in the measurements must be attributed to the influence of the underlying rigid
substrate. Figure 7 graphically illustrates that deformations of several per cent are sufficient to
be measurably affected by the finite thickness of the sample.
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3. Calculated and measured results

3.1. Non-contact deformation theory

3.1.1. Elastic theory. This section shows how the deformation of elastic and viscoelastic
bodies may be calculated for realistic forces of extended range. The aim is to describe
quantitatively the molecular level measurements made with the AFM. The theory is based upon
continuum linear elasticity theory in the semi-infinite half-space approximation [119]

u(r) = −2

πE

∫
ds

pl(s)

|r − s| . (3.1)

Here the elasticity parameter E is given in terms of the Young’s moduli Ei and Poisson’s ratios
νi of the two bodies, 2/E = (1 − ν2

1)/E1 + (1 − ν2
2 )/E2, r = |r| and s = |s| are the lateral

distances from the central axis connecting the centers of the bodies (the integration is over the
two-dimensional plane bisecting the two bodies), and pl(s) is the local pressure (positive for
a repulsion). The quantity on the left-hand side, u(r), is the total deformation normal to the
surfaces at each position, (negative for flattening). Equation (3.1) shows how the deformation
decays away from the point of application of the local stress, and how the total deformation at
any point is the linear superposition of the deformation due to these local pressures.

The deformation relates the local nominal separation between the two bodies, h0(r), which
would be the separation if the bodies did not deform, to the actual local separation,

h(r) = h0(r)− u(r). (3.2)

Here the local separation of the undeformed surfaces is h0(r) = h0 + r 2/2R, where h0 is the
separation on the axis, and where R−1 = R−1

1 + R−1
2 is the effective radius of the interacting

bodies; in general each Ri is related to the principal radius of curvature of each body [120].
Note that this equation gives the local surface separation, whereas equation (2.3) gives the
surface separation on the central axis, which is the point of closest approach of the two bodies.

The oldest theories for the elastic deformation of bodies are contact theories in which the
local pressure pl(r) is a specified function of radius that when integrated gives u(r) = r 2/2R,
which corresponds to a flat contact region, h(r) = 0. Hertz theory is applied to repulsive
contact, and JKR theory [121] and the theory of Derjaguin, Muller, and Toporov (DMT) [122]
are applied to adhesive bodies.

The virtue of contact theories is that they give simple analytic results, but they are
unrealistic because the actual interaction force laws between surfaces have an extended range.
In these cases the local pressure depends upon the local separation,

pl(r) = p(h(r)), (3.3)

where p(h) is the pressure between two infinite planar walls at a separation of h, and is
given by the van der Waals or electric double layer force law appropriate for the bodies
being analyzed. In these so-called soft-contact theories, the local separation depends upon the
deformation, and the preceding three equations must be solved by iteration for each nominal
separation h0. This can be done, and the elastic deformation and adhesion as a function of
load for elastic solids interacting with realistic surface forces of extended range have been
characterized [76, 77, 81, 123–129].

An efficient algorithm for the solution of the non-contact elastic equation has been given
by Attard [76, 128], and it is used for the results presented here. The algorithm self-
consistently calculates the surface shape of the elastically deformed bodies due to the local
pressure, which, in turn, depends upon the local separation of the deformed bodies. In this
way one obtains the actual surface shape and the actual pressure profile, whereas contact

16



J. Phys.: Condens. Matter 19 (2007) 473201 Topical Review

mechanics assumes simplified forms for both. For the present elastic calculations there was
no hysteresis between the loading and unloading cycles. (The hysteresis observed in the
original papers [76, 77] for soft adhering bodies has since been attributed to a non-equilibrium
viscoelastic effect [128, 129].)

3.1.2. Viscoelastic theory. The elastic theory becomes inapplicable as the adhesion or
deformability of the bodies is increased, because in this regime viscoelastic effects become
important. For viscoelastic materials the elasticity parameter in equation (3.1), which gives the
instantaneous response to the pressure, is replaced by the creep compliance function, which
gives the response to past pressure changes, and this accounts for the prior history of the
sample. Hence the generalization of the elastic half-space equation involves a time convolution
integral [78, 79],

u(r, t)− u(r, t0) =
∫ t

t0

dt ′ −2

πE(t − t ′)

∫
ds

ṗ(h(s, t ′))
|r − s| . (3.4)

Here ṗ(h(r, t)) is the time rate of change of the local pressure at a distance r = |r| from
the axis and at time t . The bodies are assumed stationary up to time t0, and, if interacting
or in contact, have at that time fixed deformation corresponding to static elastic equilibrium,
u(r, t0) = u∞(r). This expression is the generalization to interactions of extended range of the
contact mechanics expression used by a number of authors [130–133]. In contact mechanics
an analytic ṗl(s, t) is specified, whereas in the present approach ṗ(h(s, t)) is determined self-
consistently by the physical force law and the past rate of change of separation.

An algorithm has been developed for solving the viscoelastic problem with arbitrary
surface forces of extended range when the creep compliance function is exponential [78],

1

E(t)
= 1

E∞
+ E∞ − E0

E∞E0
e−t/τ . (3.5)

Here E0 and E∞ are the short- and long-time elasticity parameters, respectively, and τ is the
relaxation time. This is equivalent to a single relaxation time or simple Kelvin model. The
algorithm can be generalized to more complex materials with multiple relaxation times [78].
The present three-parameter model is perhaps the simplest model of viscoelastic materials, and
is most applicable at the solid end of the spectrum. An alternative three-parameter expression,
E(t)−1 = C0 + C1tm , 0 < m < 1, has been used to model liquid-like materials [132–134].

With the exponential creep compliance function, differentiation of the deformation
yields [78]

u̇(r, t) = −1

τ
[u(r, t)− u∞(r, t)] − 2

πE0

∫
ds

ṗ(h(s, t))

|r − s| , (3.6)

where u∞ is the static deformation that would occur in the limit t → ∞ if the pressure profile
were fixed at its current value,

u∞(r, t) = −2

πE∞

∫
ds

p(h(s, t))

|r − s| . (3.7)

The rate of change of the pressure is

ṗ(h(r, t)) = [ḣ0(t)− u̇(r, t)]dp

dh

∣∣∣∣
h=h(r,t)

, (3.8)

where ḣ0(t) is the specified drive trajectory. Accordingly, equation (3.6) represents a linear
integral equation for the rate of change of deformation. It can be solved using the same
algorithm that has been developed for the elastic problem [76, 128]. It is then a simple matter to
solve the differential equation for the deformation by simple time stepping along the trajectory,
u(r, t +�t ) = u(r, t)+�t u̇(r, t).
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Figure 8. Surface profiles for an adhesive elastic sphere interacting with a rigid substrate [76, 106].
The profiles are plotted after every 2 nm drive distance from h0 = 10 nm (top) to −10 nm (bottom).
The Hamaker constant is A = 10−19 J, with z0 = 0.5 nm and R = 10 μm. The right-hand panel is
for E = 1010 N m−2 and the left-hand panel is for E = 109 N m−2.

3.2. Attraction and adhesion

The algorithm has been used to obtain results for van der Waals attractions for both
elastic [76, 77, 106, 110, 128, 129] and viscoelastic [79, 106, 110] materials. The pressure
law used for the van der Waals attraction is

p(h) = A

6πh3

[
z6

0

h6
− 1

]
, (3.9)

where A is the Hamaker constant, and z0 ≈ 0.5 nm characterizes the length scale of the
soft-wall repulsion. The surface energy for comparison with contact theories is given by
γ = A/16πz2

0. The calculations are intended as generic examples of viscoelastic behavior,
and they model no specific material.

Figure 8 shows the shape of an adhesive elastic sphere during its interaction with a rigid
planar substrate for two values of the elasticity parameter that approximately correspond to a
rubbery material and to a glass. At the largest separation, where the force is negligible, the
surface of the sphere is undeformed. At separations just larger than contact, the surface bulges
toward the substrate under the influence of the extended range of the van der Waals attraction.
This effect cannot be accounted for by contact theories, and is more pronounced for the softer
material. There is a relatively sudden jump into or out of contact, and the lateral radius of the
flattened contact region changes most rapidly in the vicinity of the jump. The edges of the
contact region are less pronounced for the harder material, but even for the soft material the
edge is not infinitely sharp, as JKR theory assumes.

Figure 9 shows a similar calculation for a viscoelastic sphere for approach and retraction,
using the same van der Waals attraction as in figure 8. The total time spent on the loading
branch is ten times the relaxation time, so that one expects to see viscoelastic effects. The
short- and long-time viscoelastic limits used in figure 9 correspond to the two elastic cases
treated in figure 8, and one can see similarities in the shapes of the surfaces of the elastic and
viscoelastic spheres. In the viscoelastic case of figure 9, one can see the undeformed surfaces
at the largest separation prior to approach, the bulge prior to contact, the relatively rapid jump
into contact, and initially a fast spreading of the flattened contact region, which continues to
grow as the bodies are driven further together. At the edges of the contact region there is a
noticeable rounding of the surface profiles on the approach branch. Following the reversal of
the motion (unloading) the surfaces become extended as they are pulled apart, and the contact
region is more well-defined (there is a sharper transition at the edge) than on the loading branch.
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Figure 9. Surface profiles for an adhesive viscoelastic sphere approaching toward and then receding
from a rigid substrate [79, 106]. The profiles are plotted every millisecond, or every 2 nm from
h0 = 10 nm (top) to −10 nm (bottom). The drive speed is |ḣ0| = 2 μm s−1 and the Hamaker
constant is A = 10−19 J, with z0 = 0.5 nm and R = 10 μm. The viscoelastic parameters are
E0 = 1010 N m−2, E∞ = 109 N m−2, and τ = 1 ms. The right-hand panel is for loading and the
left-hand panel is for unloading.

Again it should be noted that even in this case the slopes at the edge of the contact region are
not discontinuous as predicted by the JKR theory. Following the turning point, the surfaces
appear pinned in contact for a short time before the contact region begins to recede. Due to this
extension and stretching, the surfaces remain in contact longer on the unloading branch than
on the loading branch. After the surfaces jump apart they retain a memory of the stretching
that occurred during unloading, and over times comparable to the relaxation time the local
separation is smaller on the unloading branch out of contact than at the corresponding position
upon loading.

Figure 10 plots the force against the nominal separation that results from the elastic
deformations shown in figure 8. This is what one would measure in an AFM experiment.
Most noticeable is the post-contact soft compliance regime, which has a finite slope and is
approximately linear at larger loads (see the discussion of photodiode calibration in section 2.1).
The negative nominal separations in this regime indicate the amount of flattening of the elastic
colloid particle. Prior to contact the attraction is greater than for rigid particles due to the
bulging exhibited in the preceding figure. This is clear in figures 10(B) and (C), which test
the so-called central deformation approximation [76]. This gives the amount of pre-contact
deformation on the axis as a function of the actual separation,

u = A
√

2R

8Eh5/2
. (3.10)

(Positive deformation corresponds to extension or stretching.) From this one may obtain the
nominal separation as a function of the actual separation, h0 = h + u, which is tested in
figure 10(C). The consequent force is

F(h0) = −AR

6h2
, h0 = h + A

√
2R

8Eh5/2
. (3.11)

It can be seen from figure 10(B) that this simple analytic approximation is quite accurate in the
pre-contact regime.

For a viscoelastic sphere, the difference in surface shape on loading and unloading shown
in figure 9 gives rise to force hysteresis (figure 11). The hysteresis in the force curves for
viscoelastic bodies indicates energy dissipation: the energy required to move the surfaces a
nominal distance on loading is not entirely recovered from the system in moving the same
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Figure 10. Interacting adhesive elastic sphere [76, 106]. (A) Force before and after contact. From
left to right in contact the curves are for E = 109, for E = 1010 N m−2, and for a rigid sphere,
respectively, with all other parameters as in figure 8. (B) Approaching the elastic jump into contact,
the bold line is the rigid sphere, the triangles are for E = 1010 N m−2, and the crosses are for
E = 109 N m−2. The dotted curves are the central deformation approximation, equation (3.10).
(C) Actual surface separation approaching contact, using the same curves and symbols as in part
(B).

distance on unloading. The area of the hysteresis loop therefore measures the amount of energy
dissipated during the force measurement, and it increases with increasing drive velocity. The
physical origin of the decreased repulsion on the unloading curve is that at a given nominal
separation the actual local separation is larger on retraction than upon approach (because, as
figure 9 reveals, it takes a finite time for the flattened surfaces to relax), and the local pressure
and hence the total repulsion is weaker. At slow speeds the viscoelastic curve tends toward
the elastic result of figure 10 for the long-time elasticity, E = E∞, and conversely, at high
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Figure 11. Force for an adhering viscoelastic sphere [79, 106]. (A) From inside to outside
the hysteresis loops correspond to driving velocities of |ḣ0| = 1, 2, and 5 μm s−1, using the
viscoelastic parameters of figure 9. The crosses represent the static equilibrium elastic result for
E∞ = 109 N m−2, (figure 10). (B) Loading curves in the region near initial contact. The triangles
represent the static equilibrium elastic result for E0 = 1010 N m−2, and the bold curve is the force
for rigid particles.

speeds it tends toward the short-time elastic result, E = E0 (but only on approach). This
is precisely what one would expect from the definitions of the short- and long-time elastic
parameters.

The minimum in the force curves in figure 11 increases with increasing velocity. The
absolute value of the minimum, F∗, which is the maximum tension sustained by the bodies, is
called the adhesion. It can be seen that the adhesion of the viscoelastic bodies is significantly
greater than that of elastic bodies (figure 10). This velocity-dependent adhesion is explored
in more detail in figure 12. As the velocity is decreased, the curves asymptote to the
static equilibrium elastic result, calculated from equation (3.1). The JKR elastic prediction,
F∗ = 3πγ R/2, is not exact (as a contact approximation it neglects the range of the van der
Waals interaction) but is increasingly accurate as the surface energy is increased (equivalently,
as the elasticity is decreased). As the velocity increases, and the system is given less time to
equilibrate, viscoelastic effects become more evident, and the adhesion increases. Note that the
data in figures 11 and 12 were all obtained for the same maximum penetration or indentation,
min h0 = −10 nm, which is the turn-around point.

3.3. Repulsive interaction

In this section results for a viscoelastic sphere interacting with a rigid planar substrate via an
electrical double layer repulsion are given. (Analogous results for an elastic sphere were given
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Figure 12. Viscoelastic adhesion [79, 106]. The maximum tension (pull-off force, F∗) normalized
by the JKR elastic adhesion, FJKR = 3πγ R/2, is plotted as a function of the drive velocity
(logarithmic scale). The parameters are as in figure 9, except that the Hamaker constant is A = 1,
5, and 10 × 10−20 J (the surface energy is γ ≡ A/16π z2

0 = 0.80, 3.98, and 7.96 mJ m−2), for the
dotted, dashed, and solid curves, respectively.

Figure 13. Surface profiles for a repulsive viscoelastic sphere approaching toward and then receding
from a rigid substrate [78]. The profiles are plotted every 0.4 ms, or every 2 nm from h0 = 10 nm
(top) to −10 nm (bottom). The drive speed is |ḣ0| = 5 μm s−1. The viscoelastic parameters are
E0 = 1010 N m−2, E∞ = 109 N m−2, and τ = 1 ms. The electrical double pressure factor is
P = 107 N m−2, the decay length is κ−1

D = 1 nm, and R = 10 μm. The right-hand panel is for
loading and the left-hand panel is for unloading. The loading profile at h0 = 10 nm is essentially
undeformed.

above in section 2.2.) The pressure between flats that was used was

p(h) = Pe−κDh + Pw(z0/h)9, (3.12)

where the second term represents a short-ranged repulsion similar to that used in the adhesive
case (z0 = 0.5 nm and Pw = P). A Debye length of 1 nm corresponds to 0.1 M monovalent
electrolyte, and P = 107 N m−2 corresponds to a surface potential of 85 mV, which is toward
the upper limit encountered in practice.

Figure 13 shows the surface shape for this non-adhesive viscoelastic case. The asymmetry
between the loading and unloading surface shapes is due to the finite time over which the
measurement is performed. It is clear that on loading the surfaces become relatively flattened,
and their shape particularly at the center is largely determined by the geometry and the position
rather than by the elastic parameters. Immediately after the turnaround, the flattened regions
separate as a whole rather than peeling from the edge, which is what they would do in the
elastic case. This is the reason why the contact radius and the force drop so rapidly on the
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Figure 14. Force hysteresis loops for a repulsive viscoelastic sphere [78]. The parameters are as in
the preceding figure, with drive velocities of ḣ0 = ±1, ±2, and ±5 μm s−1, from inside to outside,
respectively. The bold curve is the rigid, undeformable particle result, and the crosses and triangles
are the elastic result for E = 109 and 1010 N m−2, respectively.

initial part of the unloading branch, as will be seen next. Over the time of unloading the
flattened regions relax to their more naturally curved shape. Even though the final unloading
profile at h0 = 10 nm is beyond the range of the surface force, at the high velocity of the figure
full relaxation has not yet occurred, and one can see that the surfaces still retain a memory of
their contact. The duration of the unloading branch was 2 ms, which is twice the relaxation
time, τ = 1 ms. This remnant flattening means that for a given position the surfaces are at a
greater separation on unloading than on loading, and hence the force and the contact area will
go rapidly to zero upon unloading.

Figure 14 models typical indentation measurements, which use a triangular drive velocity.
Negative values of the position would correspond to interpenetration of the undeformed
surfaces, as evinced by the almost vertical force between the rigid particles of the figure as
h0 → 0+. For deformable surfaces such negative values are allowed and, since the deformation
is negative, they correspond to positive actual separations, h(r, t) = h0(r, t)−u(r, t). The force
is increasingly repulsive in this regime. What is also noticeable is the hysteresis between the
loading and the unloading branches, and the fact that this increases with drive speed. On
the loading branch, the force–position curve for the viscoelastic particles lies between the
equilibrium elastic results for E∞ and for E0. Slow driving speeds show a more gradually
increasing repulsion and lie closer to the long-term elastic value, as one might expect. As the
speed increases the loading curves move towards the equilibrium result for the instantaneous
elastic modulus, which has a more sharply increasing repulsion. On the unloading branch, there
is initially a rapid decrease in the force immediately following the turning point. This behavior
originates in the nature of the change in the surface shape, as was discussed above. Much of
the unloading branch lies beneath the static curve corresponding to E∞, and for slow enough
driving speed one can well imagine that the two branches will coalesce on it. The fact that the
force upon unloading is less than that on loading at a given position gives the appearance that the
surfaces come in to contact (i.e. measurably interact) on approach at a greater position than they
come out of contact upon retraction, as was discussed in connection with the preceding figure.

Figure 15 shows the pre-contact deformation as the particles are uniformly driven together.
The deformation is negative, which corresponds to flattening of the particles under their mutual
repulsion. At a given position h0, the deformation is greater at the slower driving speed because
the soft component of the elasticity has more time to take effect. Conversely and consequently,
the force is greater at the faster driving speed because the surface separation of the effectively
stiffer material is smaller at a given position (not shown).
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Figure 15. Test of the viscoelastic central deformation approximation [78]. The parameters are as
in the preceding figure. (A) The drive velocities are ḣ0 = ±5 and ±1 μm s−1, for the upper and
lower data families, respectively. The symbols represent the exact calculation, the solid curves are
the full differential equation, equation (3.13), and the dashed curves are the analytic approximation,
equation (3.14). (B) The corresponding forces for ḣ0 = ±1 μm s−1, with the bold line representing
the infinitely rigid case (no deformation).

The central deformation approximation replaces the local deformation by that on the
central axis u(r, t) ⇒ u(0, t) ≡ u(t). For a simple pressure law like the present exponential
electric double layer repulsion this replacement allows the elastic integral to be evaluated
analytically [76, 77]. In the present viscoelastic case it yields [78]

u̇(t) = f (t)ḣ0(t)− [u(t)− u∞(t)]/τ
1 + f (t)

, (3.13)

where f (t) ≡
√

8πκD RP2/E2
0 exp{−κD[h0(t) − u(t)]}, and u∞(t) = −E0 f (t)/E∞κD. For

a given trajectory h0(t), the deformation u(t) is readily obtained from this by simple time
stepping.

At large separations f (t) can be neglected compared to unity in the denominator, and
κDu(t) can be neglected in the exponent. For a linear trajectory, h0(t) = h0 + ḣt , the solution
to the differential equation is

u(t) = B[e−κDḣt − e−t/τ ], (3.14)

where

B = κDḣτ E−1
0 − E−1∞

1 − κDḣτ

√
8πRP2

κD
e−κDh0 . (3.15)

Since ḣ < 0, one sees that the deformation is negative, which corresponds to flattening. The
parameter κDḣτ controls which of the two values of the elasticity dominate. For materials with
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Figure 16. AFM measurement of the force between a viscoelastic PDMS droplet (R1 = 0.30 μm)
and a silica colloid probe (R2 = 3.5 μm) in 1 mM KNO3 at pH 9.3 [83]. The triangles correspond
to a drive velocity of ḣ0 = ±1 μm s−1 and the crosses to ±4 μm s−1. The curves are the
viscoelastic theory using a double layer repulsion with P0 = 4 × 104 N m−2, (ψSi = −62 mV
and ψPDMS = −46 mV), plus a short-range steric repulsion and fitted viscoelastic parameters of
E0 = 1.2 × 106 Pa, E∞ = 0.8 × 106 Pa and τ = 0.07 s.

short relaxation times, long-ranged interactions, or for slow driving velocities, this reduces to
the static elastic result with E = E∞. In the opposite limit one obtains the static elastic result
corresponding to E = E0.

For both the full central deformation approximation, equation (3.13), and the approximate
central deformation approximation, equation (3.14), the force at a given time is [76–78]

F(t) = 2πRκ−1
D P exp{−κD[h0(t)− u(t)]}. (3.16)

This result turns out to be the same as the Derjaguin approximation, except that the planar
interaction free energy per unit area is calculated at the actual separation h(t), as given by the
approximation, rather than at the nominal separation h0(t).

As can be seen in figure 15, the central deformation approximation is quite good and it
accurately accounts for the viscoelastic behavior prior to contact. The numerical solution of
the differential equation, equation (3.13), may be described as quantitatively accurate. The
analytic approximation, equation (3.14), works well at large separations but overestimates the
deformation closer to contact when κDu(t) is no longer negligible.

The actual load at a given position is compared with that for rigid particles in figure 15(B).
It can be seen that the requisite load is reduced because the surface separation between
deformed particles at a given position is greater than that between undeformed particles.
This effect is quite clear in the elastic Derjaguin approximation (equation (3.16)). It may be
seen from figure 15(B) that this approximation is quite accurate for the two central varying
deformation expressions.

3.4. Viscoelastic measurements

Figure 16 shows indentation measurements for a cross-linked PDMS droplet [83]. The
photodiode was calibrated and the zero of separation was set as described in section 2. The
hysteresis between loading and unloading, and the velocity dependence of the measured force
demonstrates that the droplet is viscoelastic. That the droplet appears stiffer when measured
at faster speeds (i.e. the force increases more rapidly on approach), is consistent with the
theoretical results above. The energy dissipated during the indentation measurement (i.e. the
area of the hysteresis loop increases with increasing speed). The data are reasonably well fitted
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Figure 17. Cantilever response for an oscillatory AFM indentation measurement on 4% agar gel
in contact [84]. The driving amplitude is 66 nm and the mean load is 14.80 μN (circles) and
9.87μN (crosses). (A) Phase response. The curves are a third-degree polynomial fit. (B) Amplitude
response.

by the viscoelastic theory described above. The theory used an electrical double layer repulsion
for the force law. In addition to this, there is evidence of adhesion in the measured data, but
this was not taken into account in the theoretical fit. This may contribute to the discrepancy
between theory and experiment for the high speed retract data. The fitted elasticities, E∞ = 0.8
and E0 = 1.2 MPa, are in agreement with the value of 0.6 MPa measured for cross-linked
PDMS by Geneisser et al using a rheometer [135]. In the latter measurements the loss modulus
significantly increased at about 3 Hz, which is consistent with the timescale of 70 ms given by
the theoretical fit in figure 16. Obviously the quantitative results depend upon the amount of
cross-linking and the surface versus bulk sensitivity of the measurement method. Nevertheless
the data in figure 16 tend to confirm that the AFM in combination with the extended-range
viscoelastic theory is capable of quantitatively measuring the material viscoelastic properties.

AFM measurements were also made on agar gel, a soft, biopolymeric solid with high water
content [84]. Preliminary exploration established that the material was measurably viscoelastic.
A 1 mm thick film of the gel was placed under water in the AFM fluid cell and measurements
were performed in contact with a tipped cantilever, k = 47 N m−1. The photodiode was
calibrated from the response against a rigid glass slide. For the spectroscopy, the zero of phase
lag was similarly established for a rigid substrate. Custom drive signals were generated, and the
piezo-drive position, measured with a fibre-optic displacement probe, and photodiode signal,
were obtained and stored via a signal access module and digital to analog components of an
input and output board [84].

Figure 17 shows the phase and the amplitude response of the cantilever, x(t) =
Ax sin(ωt + φ), to a sinusoidal piezo-drive, z(t) = Az sin(ωt). A positive value of φ

26



J. Phys.: Condens. Matter 19 (2007) 473201 Topical Review

Figure 18. Cantilever response for a 66 nm step change the piezo-drive for 4% agar gel in
contact [84]. The initial applied loads are 19.74, 9.87, and 4.93 μN from bottom to top, respectively
(vertically offset for clarity). A step up in load occurs at t = 0, and a step back at t = 550 ms.
The lines through the measured data are exponential fits using the relaxation time ω−1

peak = 16.6 ms
obtained from the peak of the spectroscopic data.

corresponds to a phase lead. This is indeed what is measured, and at first sight it is a counter-
intuitive result. Upon reflection, however, one can see that it is a consequence of the finite
relaxation time of the viscoelastic material. The load is increasing at a certain rate, and the
deformation is decreasing at the rate of material relaxation. Near the peak of the drive the rate
of increase of the load becomes less than the rate of relaxation, so the latter effect dominates,
and the change in the response reverses sign before the change in the drive does. This phase
lead also occurs in the theoretical results presented below.

The maximum in the phase lead occurs at ωpeak = 60.3 rad s−1, or 9.6 Hz. At about
this frequency there is a step change in the amplitude response (figure 17(B)). The amplitude
is smaller at low frequencies than it is at high frequencies, corresponding to the softer nature
of the viscoelastic material on long timescales (low frequencies) compared to the short-time
response. That is to say, E0 > E∞.

Figure 18 shows the response to a step change in the piezo-drive. The viscoelastic
relaxation of the material is quite clear in the measured data. The exponential relaxation curves
have been fitted using a relaxation time equal to the reciprocal of the peak frequency obtained
from the spectroscopic data. It can be seen that such a value gives quite a good fit. There is
some dependence on load evident in the data.

The spectroscopic and impulse measurements were also modeled using the viscoelastic
theory with extended forces described above. Figure 19 shows some typical results. The phase
lead seen in the experimental data is confirmed by the theory. The relationship between the
relaxation time for the impulse measurement, and the frequency corresponding to the peak
phase lead, is also confirmed (not shown). Interestingly enough, this timescale is not equal to
the viscoelastic timescale used in the calculations, and in this case one has ωpeak = 0.8τ [84].
The theory predicts that ωpeak is independent of the applied load or the cantilever spring
constant, (see below).

Let x(t) be the cantilever deflection at time t after the step change �z in the piezo-drive,
let x(0−) be the static deflection just prior to the step, and let r(t) = [x(t)− x(0−)]/�z be the
relative change in the deflection. Then the theoretical [78] and the measured AFM data [84]
indicate an exponential relaxation of the form

r(t) = rf + [ri − rf]e−ωpeak t , (3.17)

where ri = r(0+) is the initial relative deflection immediately after the step and rf = r(t → ∞)

is the final, fully relaxed deflection following the step. For the spectroscopic data, if r(ω) =
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Figure 19. Calculated cantilever response (symbols, k = 100 N m−1) to a step or harmonic piezo-
crystal displacement for contact with a viscoelastic material (E0 = 1010 N m−2, E0 = 109 N m−2,
τ = 1 ms), with electrical double layer repulsion (P0 = 107 N m−2, κ−1

D = 1 nm) plus short-ranged
steric repulsion. The radius is R = 10 μm, and the load is 1.1 μN. The amplitude is 0.1 nm for the
step drive, and 0.2 nm for the harmonic drive, (curves) [78, 84].

Ax(ω)/Az(ω) is the cantilever amplitude relative to the piezo-drive amplitude, it turns out both
theoretically and experimentally that r(ω → 0) = rf and r(ω → ∞) = ri. The significance
of this result is that the three measured parameters, ri, rf, and τ , may be extracted from either
a frequency scan spectroscopic measurement, or from a step measurement. The former is
probably easier to automate, and the latter is probably quicker to perform.

Can one extract material properties from rheological measurements? If this is possible,
than one ought be able to compare bulk rheological measurements with nanorheological AFM
measurements. In macroscopic rheology one defines a rheological phase lag, tan δ = G ′′/G ′,
where G ′ is the storage modulus and G ′′ is the loss modulus. The mechanically equivalent
quantity for an AFM is [32]

tan δ = sinφ

cosφ − r(ω)
. (3.18)

The AFM response for this quantity is modeled in figure 20 using the viscoelastic theory with
forces of extended range. It can be seen that the magnitude of the rheological phase lag is
insensitive to the cantilever spring constant, but quite sensitive to the applied load: decreasing
the load by a factor of about five decreases the rheological phase lag by about a factor of two.
Conversely, the phase lag itself is insensitive to the load but sensitive to the spring constant. The
point is that the instrument compliance and applied stress strongly influences both measures of
the phase lag, but in different fashions. What is invariant, however, is the position of the
maximum, ωpeak.

It should be stressed that the present model is for a linear viscoelastic material, and as such
the material parameters cannot change with applied load. However, the instrumental response
can and does change with load, as the data in figure 20 indicate.

Figure 21 shows a comparison between macroscopic measurements from a parallel plate
rheometer and the AFM measurements. The rheological phase lag is used for comparison
purposes. It can be seen that the AFM data are approximately an order of magnitude larger
than the macroscopic data. However, as discussed in connection with the preceding figure, the
magnitude varies strongly with the applied load, and the local stresses are likely very different
in the two measurements. However, the theory predicts that ωpeak is a robust quantity, and one
can indeed see from figure 21 that the maximum in tan δ occurs at approximately the same
frequency in both the macroscopic and the nanoscopic measurement.
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Figure 20. Calculated AFM cantilever phase as a function of drive frequency [84]. The triangles
correspond to a load of L0 = 1.1 μN and k = 10 N m−1, the circles denote L0 = 0.2 μN and
k = 100 N m−1, and the crosses signify L0 = 1.1 μN and k = 100 N m−1. All other parameters
are as in figure 19. (A) The rheological phase lag, equation (3.18). (B) The phase lag.

Figure 21. Rheometry for 4% agar gel [84]. Open symbols are obtained with a parallel plate
laboratory rheometer (frequency sweep at fixed stress of 100 Pa) for the storage modulus G ′
(triangles), the loss modulus G ′′ (squares), and the rheological phase lag tan δ = G ′′/G ′ (open
circles). The filled circles are tan δ/10 for the AFM data, equation (3.18).

4. Conclusion

The AFM has a number of advantages for measuring the properties of elastic and viscoelastic
materials. It is a highly localized technique, with sub-micrometer lateral resolution. A number
different imaging modes can be used, and these can be correlated with each other to identify
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the underlying physical properties of the material. It is a surface sensitive technique, which
is essential for characterizing the nature of coatings, membranes, and other laminae, and for
elucidating the transition from bulk to interfacial properties.

In order to extract quantitative results from the AFM, attention has to be paid to a
number of calibration and measurement issues that arise for deformable surfaces. If the
substrate is soft, the photodiode cannot be calibrated from the slope of the contact region,
even when the compliance region appears linear. It must be either calibrated against a rigid
substrate [91, 106, 110], or else a non-contact thermal method should be used [118]. Whereas
the actual surface separation can be obtained for rigid substrates, with zero corresponding to an
infinitely steep increase in force, only the nominal separation can be obtained for deformable
particles, with negative values corresponding to the amount of flattening. The zero of nominal
separation should be determined by a horizontal shift that either sets it at the position following
the van der Waals jump into contact [91], or else makes it coincide with the theoretical electric
double layer repulsion at large separations, where the deformation is negligible [109]. For
viscoelastic measurements, and indeed for reliable force measurements in general, the non-
linearity and hysteresis in the piezo-drive must be accounted for. An in-built displacement
sensor, closed-loop operation, or an external displacement sensor should be used [84].

With a proper calibration and measurement protocol, the AFM is capable of reliable,
quantitative, and very detailed characterization of elastic and viscoelastic properties. The
spatial resolution of the probe, when convolved with the slow rate of decay of deformation
laterally from the point of application of the stress, is of the order of tens to hundreds of
nanometers. The deformation itself (flattening or stretching normal to the surface) can be
measured with a distance resolution of the order of a nanometer, and the time resolution can
be of the order of a millisecond. In order to exploit the molecular resolution that the AFM is
capable of, a similar level of theoretical modeling is required. This in practice means going
beyond the usual elastic contact theories and taking into account the extended range of the
surface forces This has been done in for elastic [76, 77] and viscoelastic [78, 79] solids, and
for the elastic deformation of gas bubbles and liquid droplets [85, 86]. Quantitative analyses
of viscoelastic AFM data have been performed for indentation [83] and for spectroscopic and
impulsive [84] measurements.

The extraction of material viscoelastic properties from measurements obtained with
macroscopic rheometry are complicated by instrumental compliance, complex geometry,
non-uniform loads, and heterogeneous composite materials, and by the lack of surface
discrimination and molecular resolution. In contrast the simple mechanical components of
the AFM (i.e. cantilever spring, spherical colloid probe, measured piezo-displacement), lend
themselves to quite precise modeling such that the instrumental compliance can be fully
accounted for. Together with the non-contact theory, this enables the viscoelastic parameters to
be reliably extracted and the material properties to be measured with molecular resolution.
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